
Combustible Dust: What Testing Can Tell You About Your Facility's Combustion Hazards

Presented by: Danielle Kittaka
Fauske & Associates

Combustible Dust

- What can be a combustible dust?
 - Organic materials, plastics, metals,
 - Small enough and dry enough

Stage 1: Material Investigation

Stage 2: Sample Identification and Characterization

Stage 3a: Reactivity as a Cloud (Deflagration)

Stage 3b: Reactivity as a Pile or Layer (combustion)

Stage 4a: Deflagration Testing

Stage 4b: Combustion Testing

Stage 1: Material Identification

Material Identification

What materials at your facility are potentially combustible?

 Organics usually, several different metals or anything that can oxidize rapidly and produce heat.

Stage 2: Sample Identification & Characterization

Sample Identification & Characterization

Representative sample

- Where was this dust tested?
- What hazard are we concerned with?
- Is this sample representative of the area we are concerned with?

Sample characterization

- Particle morphology (shape)
- Particle size
 - <75 µm
- Moisture content
 - <5% moisture content</p>

Increase of	MEC	$(dP/dt)_{max}$	MIE
Temperature			
Pressure			
Particle Size			
Moisture Content			

Sample Identification & Characterization

For best use of testing data, its important to record where the sample was collected and under what conditions

- Elevated surfaces (beams, light fixtures, tends to be very small)
- Dust collectors (can have large particles, but the dust off the filters is often very fine
- Process equipment (mills, screens, pneumatic conveying, usually a mix of all the possible sizes. 5% and sub-75 µm may be too conservative)

Stage 1: Material Investigation

Stage 2: Sample Identification and Characterization

Stage 3a: Reactivity as a Cloud (Deflagration)

Stage 4a: Deflagration Testing

Stage 3b: Reactivity as a Pile or Layer (combustion)

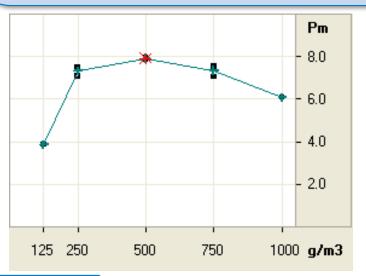
Stage 4b: Combustion Testing

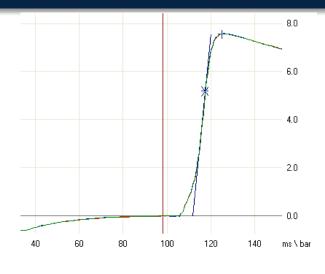
Stage 3a: Reactivity as a Cloud

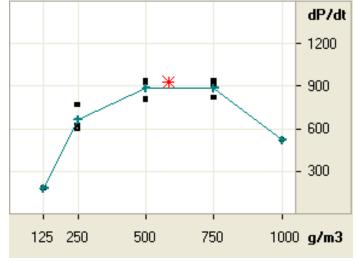
Stage 3a: Go/No Go Test

20 L Spherical Apparatus

Cubic Meter Spherical Apparatus

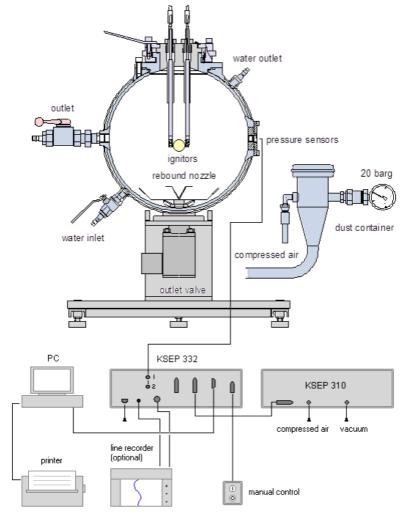

Test	Method
Modified Hartmann Tube Apparatus	 VDI 2263 Part 1 "Dust Fires and Dust Explosions Hazards – Assessment – Protective Measures: Test Methods for the Determination of the Safety Characteristics of Dusts" ISO/IEC 80079 -20-2 "Explosive atmospheres – Part 20-2: Material characteristics – Combustible dusts test methods".
Spherical apparatus 20-L or 1-m ³	 ASTM E1226 Section 13, VDI 2263 Part 1 ISO/IEC 80079 -20-2 CEN/CENELEC




Stage 4a: Deflagration Testing

Explosion Severity (P_{max} & K_{St})

- Determined in a 20-L or 1-m³ chamber
- Indication of the severity of an explosion
 - $P_{max} = maximum pressure$
 - $K_{St} = (dP/dt)_{max} \times V^{1/3}$
- Applications:
 - Explosion Protection (Vent sizing)


Additional 20 L Testing

Minimum Explosion Concentration (MEC)

- Applications
 - Determining hazardous equipment (exceptions are allowed below 25% of MEC)
 - Determining Area Hazards

Limiting Oxygen Concentration (LOC)

- Applications:
 - Used for inert systems

Minimum Ignition Energy (MIE)

Test	Method	
Minimum Ignition Energy of a Dust Cloud in Air	 ASTM E2019-03 Capacitive spark ignition source Material dispersed over ignition source 	

- Minimum spark energy needed to ignite a dispersed dust 0 cloud
- Predicts the ease and likelihood of ignition of a dispersed dust cloud
 - A capacitive discharge spark is used for this test
 - Test can be run with or without inductance
- Applications: 0
 - Bonding and grounding measures (personnel)

Minimum Ignition Temperature of a Dust Cloud (MIT)

Test	Method	
Minimum Ignition Temperature of a Dust Cloud	 ASTM E1491-06 BAM Oven Apparatus Material dispersed through preheated oven 	

- What surface temperature would ignite a dust cloud?
- Applications:
 - hot equipment like dryers or ovens
 - hot spots like bearings, mechanical parts

Stage 1: Material Investigation

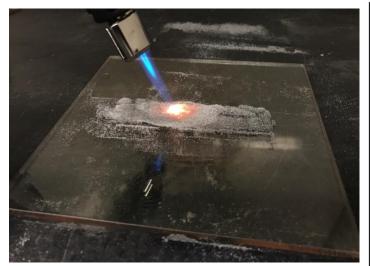
Stage 2: Sample Identification and Characterization

Stage 3a: Reactivity as a Cloud (Deflagration)

Stage 4a: Deflagration Testing

Stage 3b: Reactivity as a Pile or Layer (combustion)

Stage 4b: Combustion Testing



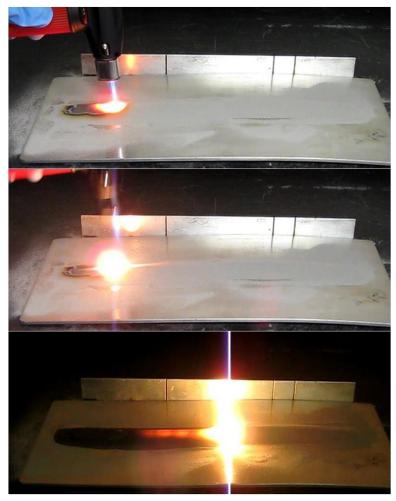
Stage 3b: Reactivity as a Pile or Layer

Stage 3b

Watch for Propagation

Test	Method
Burning Behavior Test	 VDI 2263 Part 1 Mold powder into a pile using a standard mold Flame or platinum wire ignition source
Burn Rate Screening Test	 UN Transportation of Dangerous Goods test Method Longer mold than the VDI test

Source: Methods in Chemical Process Safety



Test Result	Observed Flame Propagation	Combustion Class (CL#)
No Ignition (No flame or embers) (Discoloration or hardening)		1
Brief Ignition, Rapid Extinction (flame extinguishes in < 10 sec)	NO	2
Localized combustion or glowing with practically no spreading (embers or flame hold in place for > 10 sec)		3
Glowing without sparks (smoldering) or slow decomposition without flame (takes > 30 sec for embers/smoldering to propagate length of powder train)		4
Burning like fireworks or slow quiet burning with flames (takes > 30 sec for flame to propagate length of powder train)	YES	5
Very rapid combustion with flame propagation or rapid decomposition without flame (takes < 30 sec to propagate length of powder train)		6

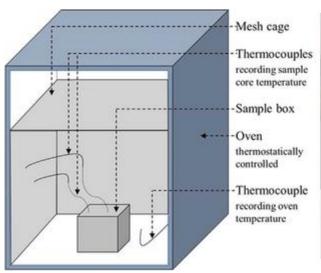
Stage 4b: Combustion Testing

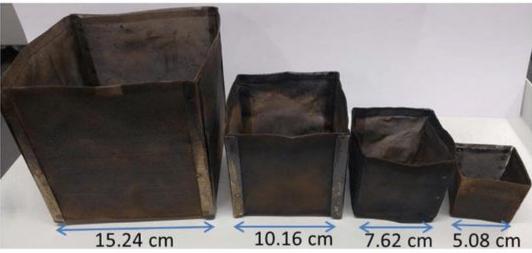
Burn Rate

- UN Manual of Tests and Criteria for Transportation of Dangerous Goods, Section 33, Classification Procedures, Test Methods and Criteria Relating to Class 4, Test N.1: Test Method for Readily Combustible Solids
- Looking for packing group II or III, difference is if a wetted spot will stop the propagation
 - Failure of wetted spot stopping the propagation can indicate that sprinkler systems would be ineffective in case of a fire

Layer Ignition Temperature

- ASTM E2021
 - Similar to:
 - VDI 2263 Part 1 (1990)
 - ISO/IEC 80079-20-2 (2016)
 - EN 50281-2-1:1999
- Other methods use a thinner layer (12.7 mm vs 5 mm).
- Ignition criteria:
 - Visible combustion
 - Temp difference greater than 50°C
- Applications:
 - Conveyors
 - Bucket Elevators
 - Motors




Source: Methods in Chemical Process Safety

Hot Storage Screening

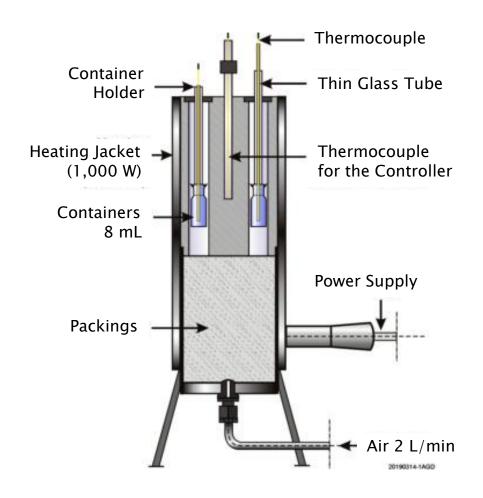
- VDI2263 Part 1 Section 1.4.2
- Applications:
 - Bulk Storage
- Similar to LIT, the greater the volume, the lower the self-heating temperature
- Testing with multiple volumes can create a correlation to extrapolate temperatures for larger volumes

Source: *Prime Process Safety*

Conclusions

- Hazards exist for both dust layers AND dust clouds
- Knowing your dust characteristics allows for safer design
- Testing allows you to estimate the probability and consequence to determine the risk level

Thank you!

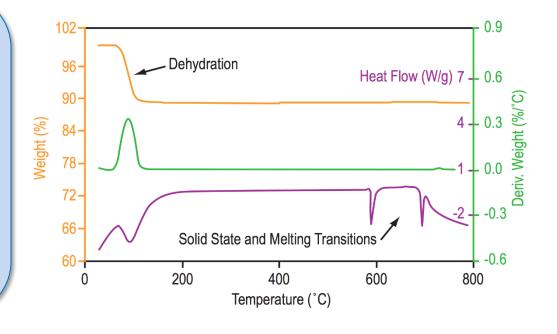

Any questions?

Contact me at Kittaka@fauske.com

Additional Testing

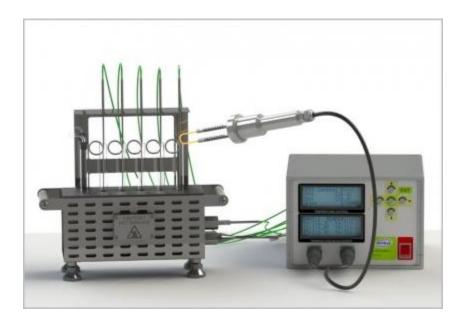
Auto Ignition Screening (Grewer)

- VDI2263 Part 1 Section 1.4.1
- Two containers, one with sample, one with reference material
- Test Conditions
 - Heat (constant ramp)
 - Air flow (low air flow)
 - Up to 300°C
- Applications
 - Spray dryers
 - Ovens
 - silos



Exothermic Decomposition Screening

Test	Method
Test Method for Thermal Stability by Thermogravimetry	ASTM E2550Mass of sample is measured as temperature increases
Standard Test for the Thermal Stability of Chemicals by Differential Scanning Calorimetry	 ASTM E537 Measure of heat change during a chemical process


- TGA or DSC, together or separate
- Determine temperature at which thermal decomposition occurs
- Can use air or an inert atmosphere
- Ramping temp
- Determines Onset temp and Peak temp

Smoldering Gas Evolution (Lütolf)

- VDI2263 Part 1 Section 1.5.1.
- Heated at a ramp and then repeated isothermally
- Can measure the gas generation or test the flammability of the gas
- 5-hour test

